ECRR Recommendations 2010
Purchasing and free download information

The presentation in 2003 of the new radiation exposure model of the European Committee on Radiation Risk (link) caused something of a revolution in the focus of scientists and politicians on the adequacy of previous scientific theories of the effects of radiation on living systems. This was long overdue, of course, since evidence has been available for more than 40 years that it was unsafe to use studies of external acute radiation to inform about risk from internal chronic exposures to evolutionarily novel radionuclides. Such a scientific paradigm shift is not easy: the course and direction of the nuclear, military, economic and political machine dedicated to the development of nuclear energy and its military applications is monolithic and has massive inertia. It was therefore surprising and encouraging that ECRR2003 received such attention, and effectively brought about a new and intense interest in the flaw in the then current philosophy of radiation risk: the physics-based concept of absorbed dose. The support and encouragement for the new model, and its success in many court cases (where it was invariably set against the ICRP model) was perhaps assisted by the increasing evidence from Chernobyl fallout exposures and from examination of Depleted Uranium effects which were emerging at the time of ECRR2003. The success of the ECRR model is that it gives the correct answer to the question about the numbers of cancers and other illnesses that follow an exposure to internal fission products. This is immediately clear to anyone: to juries and judges as well as ordinary members of the public. It received powerful support from reports of increases in cancer in Belarus after Chernobyl and also from the epidemiological studies of Martin Tondel of cancer in northern Sweden published in 2004: Tondel’s findings of a statistically significant 11% increase in cancer per 100kBq/m2 Cs-137 contamination from Chernobyl are almost exactly predicted by the ECRR2003 model.

There have also been developments in laboratory science that can be explained in the new model but are quite impossible to explain in the old ICRP model. One of these is the understanding that elements of high atomic number, like Uranium (but also non-radioactive elements like Platinum, Gold etc.) have the ability to alter the absorption characteristics of tissues in which they are embedded. Uranium is the central element around which the nuclear fuel cycle revolves, and huge quantities of the substance have been contaminating the biosphere since early in the last century. It is therefore necessary to update the ECRR risk model and include consideration of these ‘phantom radiation effects’. The widespread dispersion of Uranium from weapons usage has made it necessary to add a chapter on Uranium weapons. Since its founding in Brussels in 1998, the ECRR has been joined by many eminent radiation scientists from many countries. It will be clear from this new revised edition, that the pressure on politicians and scientists to change their understanding of the health effects of ionizing radiation is now too great to ignore.


Purchasing and free download information